
Real-Time Linux Response Time
Measurement

May 2016
École Polytechnique de Montreal

Julien Desfossez
Michel Dagenais

2

Latency-tracker

● Kernel module to track down latency problems
at run-time

● Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree
source code)

● Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

3

Usage

tracker = latency_tracker_create(threshold,
timeout, callback);

latency_tracker_event_in(tracker, key);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event_out
takes too long to arrive (off-CPU profiling).

4

Implemented Use-Cases

● Block layer latency
– Delay between block request issue and complete

● Wake-up latency
– Delay between sched_wakeup and sched_switch

● Network latency
● IRQ handler latency
● System call latency

– Delay between the entry and exit of a system call

● Offcpu latency
– How long a process has been scheduled out

5

Performance Optimizations

● Controlled memory allocation
● Lock-less per-cpu RCU free-list
● Out-of-context reallocation of memory if

needed/enabled
● Kernel-ported lock-less userspace-rcu hashtable
● Custom call_rcu thread to avoid the variable side-

effects of the built-in one
● Numa-aware memory allocator

6

Measuring Response Time Latency

● Start tracking when the kernel receives the
interrupt

● Compute the delay up to the moment when:
– The target task gets scheduled in

– The target task informs the kernel it finished its work

– The target task goes back to waiting for the next
interrupt

● Launch a user-defined action on high latency

7

Measuring Response Time Latency

● Work with the two main workloads:
– periodic (timers)

– aperiodic (hardware interrupts)

8

Interrupts Critical Path

9

Online Critical Tree

● Tracking an interrupt up to the point where a
user-space task starts to run is usually a chain
(no branches)

● But if we track an interrupt until the target task
completes its work, there can be a lot of
branches

● Each call to sched_waking or softirq_raise
creates a new branch in the chain

10

Online Critical Tree

● We stop the tracking when one chain matches
all the criteria

● We only know which one at the end
● So we need to track everything and cleanup

as soon as possible to limit the overhead

11

Tracking in User-space

● Do not stop tracking when the target task is
scheduled in or scheduled out

● More complex workloads:
– Asynchronous

– Active polling

– Multi-process

12

13

Demos

14

Overhead

Total : 8µs for 7 transitions

15

Overhead

16

Install it

apt-get install git gcc make
linux-headers-generic

git clone
https://github.com/efficios/latenc
y-tracker.git

cd latency-tracker

make

insmod latency_tracker.ko

insmod latency_tracker_rt.ko

17

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

