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Latency-tracker

● Kernel module to track down latency problems 
at run-time

● Simple API that can be called from anywhere in 
the kernel (tracepoints, kprobes, netfilter hooks, 
hardcoded in other module or the kernel tree 
source code)

● Keep track of entry/exit events and calls a 
callback if the delay between the two events is 
higher than a threshold
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Usage

tracker = latency_tracker_create(threshold, 
timeout, callback);

latency_tracker_event_in(tracker, key);

....

latency_tracker_event_out(tracker, key);

If the delay between the event_in and event_out for the same key is 
higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event_out 
takes too long to arrive (off-CPU profiling).
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Implemented Use-Cases

● Block layer latency
– Delay between block request issue and complete

● Wake-up latency
– Delay between sched_wakeup and sched_switch

● Network latency
● IRQ handler latency
● System call latency

– Delay between the entry and exit of a system call

● Offcpu latency
– How long a process has been scheduled out
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Performance Optimizations

● Controlled memory allocation
● Lock-less per-cpu RCU free-list
● Out-of-context reallocation of memory if 

needed/enabled
● Kernel-ported lock-less userspace-rcu hashtable
● Custom call_rcu thread to avoid the variable side-

effects of the built-in one
● Numa-aware memory allocator
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Measuring Response Time Latency

● Start tracking when the kernel receives the 
interrupt

● Compute the delay up to the moment when:
– The target task gets scheduled in

– The target task informs the kernel it finished its work

– The target task goes back to waiting for the next 
interrupt

● Launch a user-defined action on high latency
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Measuring Response Time Latency

● Work with the two main workloads:
– periodic (timers)

– aperiodic (hardware interrupts)
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Interrupts Critical Path
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Online Critical Tree

● Tracking an interrupt up to the point where a 
user-space task starts to run is usually a chain 
(no branches)

● But if we track an interrupt until the target task 
completes its work, there can be a lot of 
branches

● Each call to sched_waking or softirq_raise 
creates a new branch in the chain
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Online Critical Tree

● We stop the tracking when one chain matches 
all the criteria

● We only know which one at the end
● So we need to track everything and cleanup 

as soon as possible to limit the overhead
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Tracking in User-space

● Do not stop tracking when the target task is 
scheduled in or scheduled out

● More complex workloads:
– Asynchronous

– Active polling

– Multi-process
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Demos
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Overhead

Total : 8µs for 7 transitions



15

Overhead
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Install it

apt-get install git gcc make 
linux-headers-generic

git clone 
https://github.com/efficios/latenc
y-tracker.git

cd latency-tracker

make

insmod latency_tracker.ko

insmod latency_tracker_rt.ko
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Questions ?
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