Real-Time Linux Response Time
Measurement

Julien Desfossez
Michel Dagenais

] May 2016
Ecole Polytechnique de Montreal

Latency-tracker

» Kernel module to track down latency problems
at run-time

» Simple API that can be called from anywhere in
the kernel (tracepoints, kprobes, netfilter hooks,
hardcoded in other module or the kernel tree
source code)

» Keep track of entry/exit events and calls a
callback if the delay between the two events is
higher than a threshold

Usage

tracker = latency tracker create(threshold,
timeout, callback);

latency tracker event in(tracker,) ;
latency tracker event out (tracker,) ;
If the delay between the event in and event_out for the same IS

higher than “threshold”, the callback function is called.

The timeout parameter allows to launch the callback if the event out
takes too long to arrive (off-CPU profiling).

Implemented Use-Cases

Block layer latency
- Delay between block request issue and complete
Wake-up latency

- Delay between sched wakeup and sched switch
Network latency

IRQ handler latency

« System call latency
- Delay between the entry and exit of a system call
« Offcpu latency

- How long a process has been scheduled out

Performance Optimizations

» Controlled memory allocation
* Lock-less per-cpu RCU free-list

» QOut-of-context reallocation of memory if
needed/enabled

» Kernel-ported lock-less userspace-rcu hashtable

e Custom call _rcu thread to avoid the variable side-
effects of the built-in one

* Numa-aware memory allocator

Measuring Response Time Latency

« Start tracking when the kernel receives the

interrupt

 Compute the delay up to the moment when:

- The target tas
- The target tas

- The target tas
interrupt

K gets scheduled in
K Informs the kernel it finished its work

K goes back to waiting for the next

» Launch a user-defined action on high latency

Measuring Response Time Latency

* Work with the two main workloads:
— periodic (timers)
— aperiodic (hardware interrupts)

Interrupts Critical Path

do_IRQ_entry

J

!

irq_handler_entry

|

softirq_raise

[
[
[

|

"

irq_handler_exit

Y

-

(.

do_IRQ_exit

softirq_entry

A

y

sched _waking

A

y

softirq_exit

—

sched_switch

Online Critical Tree

* Tracking an interrupt up to the point where a
user-space task starts to run is usually a chain
(no branches)

» But if we track an interrupt until the target task
completes its work, there can be a lot of
branches

 Each call to sched waking or softirg_raise
creates a new branch in the chain

Online Critical Tree

* We stop the tracking when one chain matches
all the criteria

* \We only know which one at the end

SO we need to track everything and cleanup
as soon as possible to limit the overhead

10

Tracking in User-space

* Do not stop tracking when the target task is
scheduled in or scheduled out

 More complex workloads:
- Asynchronous
- Active polling
— Multi-process

11

kworker/4:2
irq/36-p4p1-TxR
kworker/5:1
sshd
¥ bash
¥ fest
logging
statistics
worker

12

Demos

13

Overhead

Metric Transition | No transition
Ratio of requests 0.6% 99.4 %
Average latency 1136.93 ns 259.13 ns
Standard deviation 278.71 ns 28.42 ns
Minimum latency 565 ns 237 ns
Maximum latency 3028 ns 1938 ns
Average instruction count | 2024 756
Average L1 misses 38.78 3.04
Average LLC misses 3.66 0.003
Average TLB misses 0.12 0.002
Average branch misses 3.08 0.15

Total : 8us for 7 transitions

14

Overhead

Test Baseline Tracker Overhead
CPU 19.20s 19.20s 0.00%
Memory 32.33s 32.37s 0.30%
File Read /Write | 9.04 s 9.50 s 5.10%
Network 1Gbps 942Mbps/s | 942Mbps/s | 0.00%
Network 10Gbps | 8.02Gbps/s | 7.70Gbps/s | 3.89%
OLTP (MySQL) | 2.27s 2,385 1.84%

15

Install it

apt—-get 1nstall git gcc make
linux—-headers—-generic

glt clone
https://github.com/efficios/latenc
v—tracker.git

cd latency-tracker
make
insmod latency tracker.ko

insmod latency tracker rt.ko

16

Questions ?

17

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

