

Going Further in

Hardware Tracing
Suchakrapani Datt Sharma

May 5, 2016

 École Polytechnique de Montréal

Laboratoire DORSAL

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Agenda
Introduction

● Hardware Tracing

● Research Updates

New Investigations
● Intel PT

● Tracing the Tracers

● VM Analysis!

● Experiments with CoreSight

● ARM CoreSight Internals

Upcoming and in-progress
● Coresight applications and benchmarks

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Introduction

Research Focus : Hardware tracing on Intel and ARM for low

overhead and high accuracy tracing and profiling

Research Updates
● Intel PT internals and overhead

● Analysis of hardware trace packet decoding

● VM Analysis through PT traces

● Journal paper submitted to JoE (IET)

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Hardware Tracing 101
What and Why?

● In its current form, I define it as

“traceless tracing” (zero-overhead)

● Precise real-time data for

instruction level profile and debug

● Trace packets flow from

'processor' to on-chip buffer or

external transport

● Traces in range of hundreds of

Mbits/s to Gbits/s.

● Being quickly adopted in Linux

(Perf/Coresight)

CPU0

TRACE CONTROL

HARDWARE
TRACE MODULE

CPU n

TRACE CONTROL

HARDWARE
TRACE MODULE

On-Chip Buffer Transport Layer

Trace Bus

External
Trace Port

Memory Bus

 In-Memory
 Buffer

Software

 Hardware
 Buffer Encoded

Trace
Stream

Trace
Control Trace Decoder

mov $42, %r8
mov $42, %r9
cmp %r8, %r9
je <nop>

Decoded
Trace
Stream

Cite image as, Sharma S., Dagenais M, Hardware-Assisted Instruction Profiling and Latency Detection, (pre-print) DORSAL, 2016

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Intel PT

Tracing the Tracers
● Targeted snapshot of callstacks – mmap() example

PT Overheads
● 2-3% in common use-cases. Mostly memory related.

● Ftrace vs PT : 63% vs 1% (I/O)

9.3%

entry_SYSCALL_64()

lttng_event_write()

13.3%

entry_SYSCALL_64()

SyS_mmap()173 ns and 917

instructions

more

Cite image and data as, Sharma S., Dagenais M, Hardware-Assisted Instruction Profiling and Latency Detection, (pre-print) DORSAL, 2016

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Intel PT

VM Analysis
● Yes it is technically possible!

● VMPT : https://github.com/tuxology/vmpt

● Decoder + TraceCompass View

● VMCS packets are generated from PT hardware

● VMCS Base Register (Associated VM)

● Decode [PIP -- PAD (8) -- VMCS –- TSC]

● Bundle decoded associated PIP (CR3 value / NR bit), VMCS

base register and TSC packets in XML/JSON

● Analysis requires small kernel patch for now

Talk
to Ha

ni

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Intel PT

VM Analysis

Host

VMM

VM-P1

VM-P2

<bundle>
 <PIP> 32423545 </PIP>

<NR> 1 </NR>
<VMCS> 243241334 </VMCS>
<TSC> 2342353646 </TSC>

</bundle>

PT Binary Dump VMPT

vCPU

Expectation :

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Intel PT

VM Analysis
Thanks

to Geneviè
ve!

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Hardware Tracing

Other Architectures
● ARM CoreSight (Program and Data Flow Trace) [1]

● Stream trace to external transport or internal buffer

● Intel PT (Program Flow) [2] [3]

● MIPS PDTrace (Program and Data Flow)

ARM CoreSight
● Program Flow Trace and Data Trace

● PE → Trace Router → System Bus → System RAM

● PE → Trace FIFO → TPIU → External Hardware

● Can be configured as desired on silicon

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

ARM CoreSight

SoC View

Courtesy, ARM

ETR

ETF

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

ARM CoreSight

ETMv4
● Major revision [4], highly configurable

● Insn only for A family. Data+Insn only for M and R family

● P0 (Insn), P1 and P2 (Data) elements, Other elements

● P0 : Atom elements (E/N), Q elements (cycle count)

● P0 : Branch, Synchronization, Exceptions, TimeStamp,

Conditional (C), Result (R), Mispredict etc.

● Analyzer decodes same way as libipt (Intel PT decoder lib)

● Trace Control with CSAL

● Expose configuration registers by mmaping them

● Trace start and stop. Decoding needs to use DS-5

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

ARM CoreSight

SoC View Kernel View

Courtesy, ARM

Device Tree

CoreSight Driver

Configure Sink/Source

Trace Start/Stop bit

ETR

ETF

Encoded Trace

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

ARM CoreSight

ETM

Experiments with Cortex-A53 (ARMv8)
● Qualcomm Snapdragon 410 platform

● Configure ETM as source and ETF as sink with CS driver

● Linaro's kernel, upstream in 4.7 probably

● Decoder issues! ptm2human [5] decodes ETMv4 packets but is

not as mature as DS-5 or Intel's processor trace library

● Improve ptm2human

● Own decoder as per research requirements

ETFFunnel trace.bin

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Upcoming

ARM CoreSight
● Try to use ETR to send data to a RAM buffer

● Either improve ptm2human or use CASL for tracing

● Benchmarks to compare CoreSight for ARMv8 and Intel PT for

Skylake machines

● Trace granularity

● Trace size, bandwidth and overheads

Intel PT
● VM Analysis

● Bigger PT Buffer (Perf or modified simple-pt)

● Compare with Hani's software-only approach

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

Upcoming

With Hardware Traces
● High level device drivers analysis based on execution profiles

● Rudimentary memory analysis with instruction flow only

● Such static analysis techniques have been tried [6]. Can we

do it with decoded hardware traces?

Misc
● Cycle accuracy of architecture simulators such as PTLSim [7] or

Marssx86 [8] vs PT

● eBPF controlled/filtered snapshots – integrate hardware

assisted tracing with dynamic tracers

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

References
[1] Debug and Trace for Multicore SoCs, ARM Whitepaper, 2008

[2] Intel 64 and IA-32 Architecture Software Developer Manual

[3] Adding processor Trace Support to Linux [LWN] http://lwn.net/Articles/648154/

[4] ARM® Embedded Trace Macrocell Architecture Specification (ETMv4.0 to ETMv4.2)

[5] ptm2human : https://github.com/hwangcc23/ptm2human

[6] Venkitaraman R, Gupta G, Static Program Analysis of Embedded Executable

 Assembly Code, ACM CASES 2004

[7] Yourst Matt, PTLsim: A Cycle Accurate Full System x86-64 Microarchitectural Simulator,

 2007 IEEE International Symposium on Performance Analysis of Systems & Software

[8] MARSSx86, http://www.marss86.org

http://lwn.net/Articles/648154/

POLYTECHNIQUE MONTREAL – Suchakrapani Datt Sharma

 Questions?
 suchakrapani.sharma@polymtl.ca

 suchakra on #lttng

mailto:suchakrapani.sharma@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

