
Tracing and trace analysis strategies for

GPU-accelerated HSA programs

Progress Report Meeting
December 7, 2017

Paul Margheritta Michel Dagenais

DORSAL lab
École Polytechnique de Montréal



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Introduction

(8 compute units,
8 × 64 processing elements)

• GPU: Graphics Processing Unit

• SIMD-based highly parallel
architecture (up to several thousand
processing elements)

• Purpose: graphics (video games, etc.)
vs GPGPU (computation, deep
learning, etc.)

• Increasingly popular, powerful and
more easily programmable

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 2/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Research goals

• Explore current tracing and profiling
tools for GPU-accelerated programs

• Provide tracing mechanisms in a GPU
compute-oriented runtime

• Create post-tracing processing features
for our traces

• Design views for better understanding

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 3/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Software context: GPU-related tools

• HSA: an architecture that speeds up
communication between devices in a
heterogenous context

• ROCr: a HSA-based GPU runtime that
we can use to run compute kernels

• CLOC: a tool to generate HSA code
objects from OpenCL kernels

• CodeXL: an open-source debugging and
performance analysis tool for HSA and
OpenCL

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 4/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Software context: open-source analysis tools

• LTTng: helps us trace events in the
ROCr runtime

• Babeltrace: helps us visualize trace
and create post-tracing processing
scripts

• Trace Compass: helps us create
views for our traces

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 5/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

General concept of LTTng-HSA

• Our focus: tracing GPU-related CPU events
• The LTTng instrumentation is inserted with a collection of

preloaded libraries that intercept relevant functions

• Not all events can be traced in one execution: we trace
separately and merge the resulting traces

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 6/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Synchronous tracing targets

hsa_init hsa_init

(trace point) function_entry

(trace point) function_exit

LD_PRELOAD

new hsa_init

• Call stack target: all HSA API functions instrumented at
entry and exit

• Queue profiling target: traces the state of user-mode queues
and the enqueuing of GPU kernel dispatch packets

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 7/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Asynchronous tracing targets

• The events from these tracing targets require sorting when
merged into a larger trace.

• Kernel timing target: uses a specific type of queue to record
GPU kernel start/end times

• Performance counters target: uses the SoftCP mode to
define pre- and post-dispatch callbacks that set up
mechanisms from GPUPerfAPI to gather GPU counters.
Some useful counters:

• CacheHit: the ratio of GPU L2 cache hits
• VALUInsts: the average number of vector ALU instructions

executed per work item

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 8/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Trace merging and event sorting

Traces are merged with Babeltrace then asynchronous events are
sorted in the larger trace:

GPU kernel runs

qu
eu

e c
re

at
ed

qu
eu

e d
es

tro
ye

d

kernel_start_nm
{ timestamp = 37659599 }

kernel_end_nm
{ timestamp = 38309839 }

GPU kernel runs

qu
eu

e c
re

at
ed

qu
eu

e d
es

tro
ye

d

kernel_start kernel_end

ini
tia

liz
at

ion

be
gin

s

ini
tia

liz
at

ion

be
gin

s

38309839 ns

37659599 ns

processing

hsa_ext_tools_get_kernel_times

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 9/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Trace Compass views

• Call stack view:

hsa_init

hsa_queue_create

hsa_shut_down

• Queue profiling view:

queue states

kernel states

runtime_initialized runtime_shut_down
aql_kernel_dispatch_
packet_submitted

queue_created

queue_destroyed

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 10/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Experimental results

• Context: a GPU-accelerated
matrix multiplication algorithm

• We run our tests on ROCr/HSA
with OpenCL kernels compiled
with CLOC

• 3 versions of the algorithm are
compared:

1 naive algorithm with
pseudo-random accesses

2 naive algorithm with accesses in
the right order

3 more optimized algorithm with
tiling

(image by Cedric Nugteren)

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 11/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Experimental results

• Relevant information is provided by the
kernel timing target and the
performance counters target to
gradually improve the algorithm

• Version 3 is faster than version 2, which is
faster than version 1

• Performance counters show that:
• version 1 has a high L2 cache miss ratio
• version 1 and 2 have a high number of

vector and scalar instructions

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 12/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Additional results and contributions

• Created an LTTng kernel module
to trace events from the AMD
Linux Kernel drivers

• Analyzed the overhead of our
solution

• Automated the generation of
interception mechanisms for the
call stack target

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 13/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Possible improvements

• Improve the reliability of trace
merging and event sorting

• Provide tracing targets for specific
runtimes (OpenCL, OpenGL,
deep learning frameworks, etc.)

• Go deeper in the Linux
kernel-side analysis

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 14/15



POLYTECHNIQUE MONTRÉAL
Introduction Implementation Results Conclusion

Thank you!

Any questions?

paul.margheritta@polymtl.ca

github.com/pmargheritta

Progress Report Meeting – December 2017 – Paul Margheritta, Michel Dagenais 15/15


	Introduction
	Implementation
	Results
	Conclusion

