
Performance Analysis of
Parallel Applications

Using
LTTng & Trace Compass

Naser Ezzati

DORSAL LAB
Progress Report Meeting
Polytechnique Montreal

Dec 2017

2

What is MPI?

– Message Passing Interface (MPI)
● Industry-wide standard protocol for passing

messages between parallel processors.
● MPI is for communication among processes

with separate address spaces.
● Interprocess communication consists of

– Synchronization
– Movement of data from one process’s address space to

another’s.

3

MPI vs Threads

● Thread parallelism provides a shared
memory model within a process.
– Pthread: an execution model allows a

program to control multiple different
overlapping flows of work.

– OpenMP: looplevel parallelism,
created and managed by the
compiler, based on user directives.

● MPI describes parallelism between
processes (with separate address
spaces).

● MPICH, OpenMPI

4

p1 p2

MPI + Threads

● MPI-only:
– Single thread of execution

● System resources do not scale at
the same rate as processing cores

● MPI+threads:
– Multiple threads executing

simultaneously
● Allows sharing of system resources

5

Parallel Sort Using MPI

• #include <mpi.h>
• #include <stdio.h>
• int main(int argc, char ** argv)
• {
• int rank, a[1000], b[500];
• MPI_Init(&argc, &argv);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {

• MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);
• sort(a, 500);
• MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,
• MPI_STATUS_IGNORE);
• /* Serial: Merge array b and sorted part of array a */

• }
• else if (rank == 1) {

• MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,
• MPI_STATUS_IGNORE);
• sort(b, 500);
• MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

• }
• MPI_Finalize(); return 0;
• }

p1

p2

t

t

6

MPI Performance Analysis

● Debugging can be difficult!
– In a serial program, you can find slow functions (by

profiling, tracing, etc.) and optimize them.

● Investigating of all participating processes
– In MPI, if MPI_Recv() takes a lot of time in one

process, we should look at other processes, as well as
the problematic function/process.

● What happens on other processes, when this
process/function is slow?

– The synchronization among the processes can be a
concern and should be debugged.

7

MPI Performance Analysis (contd)

● Network performance is important:
– Latency: The time from when a Send is initiated until

the first byte is received by a Receive.
– Bandwidth: The rate at which a sender is able to send

data to a receiver.

● Profilers:
– Aggregate statistics at run time

● Amount of time spent in MPI functions, number of messages
sent, etc.

● Tracers
– Collect events from different parts of the execution.

8

PMPI: MPI Profiling

● PMPI refers to the MPI standard profiling
interface.
– Profiling layer of MPI
– Implemented via additional API in MPI library
– Different name: PMPI_Init()

● Same functionality as MPI_Init()

● Each standard MPI function can be called with
an MPI_ or PMPI_ prefix.
– MPI_Send() or PMPI_Send().

● This allows one to write functions with the
MPI_ prefix that call the equivalent PMPI_
function.

Int MPI_Init(…)
{
trace_entry();
 PMPI_Init(…);
trace_exit();
}

9

PMPI: MPI Profiling (contd)

● User may choose subset of MPI routines to be
profiled
– Useful for building performance analysis tools

– LD_PRELOAD or dynamic linking

● Tools
– Vampir: Timeline of MPI traffic (Etnus, Inc.)
– Paradyn: Performance analysis (U. Wisconsin)

– mpiP: J. Vetter (LLNL)

– ScalaTrace: F. Mueller et al. (NCSU)

– Paraver

– Jumpshot

– LTTng & Trace Compass ?

10

MPI Tracing with LTTng

MPI_Send(…)

{

 Tracepoint (mpi,mpi_send_entry,…)

 PMPI_Send(…)

 Tracepoint (mpi,mpi_send_exit,…)

}
● Compile and LD_Preload it

● LD_Preload is to intercept methods
● Load this before all of other libraries

11

LTTng-UST Tracepoints

● MPI (50 methods)
● Environment Management Functions (MPI_Init, MPI_Finalize MPI_Abort, etc.)
● Point to Point Communication Functions (MPI_Send, MPI_Recv,

MPI_Isend,MPI_Irecv, MPI_Ssend, MPI_Wait*, etc.)
● Collective Communication Functions (MPI_Barrier, MPI_Bcast, MPI_Scatter,

MPI_Gather, MPI_Allgather, MPI_Reduce, MPI_Allreduce,
● MPI-IO Functions (MPI_File_open, MPI_File_read, MPI_File_write, MPI_File_close,

etc.)
● HDF5 (20 methods)

– Hierarchical Data Format functions

● Pthread (20 methods)
● Thread management function

– Thread create, join, etc.
● Locks

– Spin locks,Mutex, R/W locks

12

Parallel I/O Styles

● Independent Parallel I/O
– Parallelism but lots of small files to handle
– With or without MPI

13

Parallel I/O Styles (contd)

● Cooperative Parallel I/O
– Parallelism
– Only with MPI!

14

Parallel I/O Example

● Distributed Array Access
– Large array distributed among n processes
– Each square represents a sub-array in the

memory of a single process

15

Parallel I/O in MPI

● MPI has replacement functions for
POSIX I/O

● Why not use POSIX?
– Single file (instead of one file / process)
– Parallel performance

● Multiple types of I/O in MPI
– Some are not possible without MPI
–

16

HDF5

● A high level open-source parallel I/O
library
– Interface between the app and the parallel

MPI-IO.
– Encapsulates the MPI-IO library, optimize and

add more features to build a high level
parallel I/O library.

– The users only need to apply this knowledge
in their parallel program.

● Save the development and optimization time for a
parallel I/O application.

– Is been used to manage large and complex
data collections in several companies like
NASA, etc.

17

LTTng-UST Tracepoints for Parallel I/O

● Different I/O levels
– HDF5

● Hierarchical Data Format functions
(h5x_create,h5x_write,h5x_close, etc.)

– MPI
● MPI-IO Functions (MPI_File_open, MPI_File_read,

MPI_File_write, MPI_File_close, etc.)

– File system

18

Trace Compass Views

● Profiling
– Amount of time spent in MPI functions,
– Number of messages sent, the IO of each

process and the whole system,
– Different latency values, etc.

● Multilevel Call Stack
– MPI--> Pthread--> Kernel
– HDF5 --> MPI-IO → POSIX --> Kernel

19

Trace Compass Views (contd)

20

Trace Compass Views (contd)

21

Trace Compass Views (contd)

22

Trace Compass Views (contd)

23

Trace Compass Views (contd)

Case 1: ping-pong

24

Trace Compass Views (contd)

25

Trace Compass Views (contd)

26

Trace Compass Views (contd)

27

Trace Compass Views (contd)

Case 2: Multi-level Parallel I/O

28

Trace Compass Views (contd)

29

Trace Compass Views (contd)

30

Trace Compass Views (contd)

31

Trace Compass Views (contd)

32

Trace Compass Views (contd)

33

Trace Compass Views (contd)

34

Trace Compass Views (contd)

35

Trace Compass Views (contd)

36

Trace Compass Views (contd)

Case 3: MPI & Pthread

37

Trace Compass Views (contd)

38

Trace Compass Views (contd)

39

Trace Compass Views (contd)

40

Trace Compass Views (contd)

41

 Thank you

Any Question?

github.com/naser

n.ezzati@polymtl.ca

mailto:n.ezzati@polymtl.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

