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What is MPI?

– Message Passing Interface (MPI)
● Industry-wide standard protocol for passing 

messages between parallel processors.
● MPI is for communication among processes 

with separate address spaces.
● Interprocess communication consists of 

– Synchronization
– Movement of data from one process’s address space to 

another’s.
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MPI vs Threads

● Thread parallelism provides a shared 
memory model within a process.
– Pthread:  an execution model allows a 

program to control multiple different 
overlapping flows of work.

– OpenMP:  looplevel parallelism, 
created and managed by the 
compiler, based on user directives.

● MPI describes parallelism between 
processes (with separate address 
spaces).

● MPICH, OpenMPI
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MPI + Threads

● MPI-only:
– Single thread of execution

● System resources do not scale at 
the same rate as processing cores

● MPI+threads:
– Multiple threads executing 

simultaneously
● Allows sharing of system resources
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Parallel Sort Using MPI 

• #include <mpi.h>
• #include <stdio.h>
• int main(int argc, char ** argv)
• {
• int rank, a[1000], b[500];
• MPI_Init(&argc, &argv);
• MPI_Comm_rank(MPI_COMM_WORLD, &rank);
• if (rank == 0) {

• MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);
• sort(a, 500);
• MPI_Recv(b, 500, MPI_INT, 1, 0, MPI_COMM_WORLD,
• MPI_STATUS_IGNORE);
• /* Serial: Merge array b and sorted part of array a */

• }
• else if (rank == 1) {

• MPI_Recv(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD,
• MPI_STATUS_IGNORE);
• sort(b, 500);
• MPI_Send(b, 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

• }
• MPI_Finalize(); return 0;
• }
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MPI Performance Analysis

● Debugging can be difficult!
– In a serial program, you can find slow functions (by 

profiling, tracing, etc.) and optimize them.

● Investigating of all participating processes
– In MPI, if MPI_Recv() takes a lot of time in one 

process, we should look at other processes, as well as 
the problematic function/process.

● What happens on other processes, when this 
process/function is slow?

– The synchronization among the processes can be a 
concern and should be debugged.
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MPI Performance Analysis (contd)

● Network performance is important:
– Latency: The time from when a Send is initiated until 

the first byte is received by a Receive.
– Bandwidth: The rate at which a sender is able to send 

data to a receiver.

● Profilers:
– Aggregate statistics at run time

● Amount of time spent in MPI functions, number of messages 
sent, etc.

● Tracers
– Collect events from different parts of the execution.
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PMPI: MPI Profiling

● PMPI refers to the MPI standard profiling 
interface.
– Profiling layer of MPI
– Implemented via additional API in MPI library
– Different name: PMPI_Init()

● Same functionality as MPI_Init()

● Each standard MPI function can be called with 
an MPI_ or PMPI_ prefix. 
– MPI_Send() or PMPI_Send(). 

● This allows one to write functions with the 
MPI_ prefix that call the equivalent PMPI_ 
function. 

Int MPI_Init(…) 
{
trace_entry();
  PMPI_Init(…);
trace_exit();
}
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PMPI: MPI Profiling (contd)

● User may choose subset of MPI routines to be 
profiled
– Useful for building performance analysis tools

– LD_PRELOAD or dynamic linking

● Tools
– Vampir: Timeline of MPI traffic (Etnus, Inc.)
– Paradyn: Performance analysis (U. Wisconsin)

– mpiP: J. Vetter (LLNL)

– ScalaTrace: F. Mueller et al. (NCSU)

– Paraver

– Jumpshot

– LTTng & Trace Compass  ?
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MPI Tracing with LTTng

MPI_Send(…)

{

   Tracepoint (mpi,mpi_send_entry,…)

   PMPI_Send(…)

   Tracepoint (mpi,mpi_send_exit,…)

}
● Compile and LD_Preload it

● LD_Preload is to intercept methods
● Load this before all of other libraries
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LTTng-UST Tracepoints

● MPI (50 methods)
● Environment Management Functions (MPI_Init, MPI_Finalize MPI_Abort, etc.)
● Point to Point Communication Functions (MPI_Send, MPI_Recv, 

MPI_Isend,MPI_Irecv, MPI_Ssend, MPI_Wait*,  etc.) 
● Collective Communication Functions (MPI_Barrier, MPI_Bcast, MPI_Scatter, 

MPI_Gather, MPI_Allgather, MPI_Reduce, MPI_Allreduce, 
● MPI-IO Functions (MPI_File_open, MPI_File_read, MPI_File_write, MPI_File_close, 

etc.)
● HDF5 (20 methods)

– Hierarchical Data Format functions 

● Pthread (20 methods)
● Thread management function

– Thread create, join, etc.
● Locks

– Spin locks,Mutex, R/W locks
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Parallel I/O Styles  

● Independent Parallel I/O 
– Parallelism but lots of small files to handle
– With or without MPI 
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Parallel I/O Styles (contd)  

● Cooperative Parallel I/O
– Parallelism
– Only with MPI!  
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Parallel I/O Example  

● Distributed Array Access
– Large array distributed among n processes
– Each square represents a sub-array in the 

memory of a single process
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Parallel I/O in MPI  

● MPI has replacement functions for 
POSIX I/O 

● Why not use POSIX?
– Single file (instead of one file / process) 
– Parallel performance

● Multiple types of I/O in MPI
–  Some are not possible without MPI
–  
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HDF5

● A high level open-source parallel I/O 
library
– Interface between the app and the parallel 

MPI-IO.
– Encapsulates the MPI-IO library, optimize and 

add more features to build a high level 
parallel I/O library. 

– The users only need to apply this knowledge 
in their parallel program. 

● Save the development and optimization time for a 
parallel I/O application.

– Is been used to manage large and complex 
data collections in several companies like 
NASA, etc.
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LTTng-UST Tracepoints for Parallel I/O

● Different I/O levels 
– HDF5 

● Hierarchical Data Format functions 
(h5x_create,h5x_write,h5x_close, etc.)

– MPI  
● MPI-IO Functions (MPI_File_open, MPI_File_read, 

MPI_File_write, MPI_File_close, etc.)  

– File system 
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Trace Compass Views

● Profiling
– Amount of time spent in MPI functions,
– Number of messages sent, the IO of each 

process and the whole system, 
– Different latency values, etc.

● Multilevel Call Stack
– MPI--> Pthread-->  Kernel
– HDF5 --> MPI-IO → POSIX --> Kernel 
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)

Case 1: ping-pong
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)



      
27

Trace Compass Views (contd)

Case 2: Multi-level Parallel I/O
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Trace Compass Views (contd)



      
29

Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)

Case 3: MPI & Pthread 
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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Trace Compass Views (contd)
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                     Thank you

Any Question?

github.com/naser

n.ezzati@polymtl.ca

mailto:n.ezzati@polymtl.ca
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