Queen's University
Kingston, Ontario, Canada

Supporting the Model-Driven Development
of Real-time Embedded Systems with
Simulation and Animation via Highly

Customizable Code Generation

Nondini Das, Suchita Ganesan, Leo Jweda,

Mojtaba Bagherzadeh, Reza Ahmadi, Nicolas Hili, Juergen Dingel
{ndas, ganesan, juwaidah, mojtaba, ahmadi, hili,
dingel}@cs.queensu.ca
School of Computing, Queen’s University,

Kingston, Ontario, Canada

Progress Report Meeting, Ecole Polytechnique de Montréal, May 2016

Outline

\«_________//\

Introduction and Motivation

The Supporting Infrastructure
Overview
Observability of Models: Towards a Taxonomy of Events
Extending the PapyrusRT Code Generation
Defining the Libraries: The Rover Model

Animating and Interacting with the model

Integrated Debugging

May 2016 2/ 14

Introduction and Motivation

\«______,/;\

Monitoring Tools
(e.g. LTTng)

Introduction and Motivation May 2016 3/14

Introduction and Motivation

\4________/;\

From Runtime Model Monitoring. ..

Monitoring Tools
(e.g. LTTng)

Introduction and Motivation May 2016 3/14

Introduction and Motivation

«-———"’/

From Runtime Model Monitoring. ..

& v/ Timing / Resource Constraint Violation

Monitoring Tools
(e.g. LTTng)

Introduction and Motivation May 2016 3/14

Introduction and Motivation

S —

Code Execution
Flow From Runtime Model Monitoring. ..

& v/ Timing / Resource Constraint Violation
A v/ Code-driven

Monitoring Tools
(e.g. LTTng)

Introduction and Motivation May 2016 3/14

Introduction and Motivation

S —

Code Execution
Flow From Runtime Model Monitoring. ..

evl v/ Timing / Resource Constraint Violation

AT v/ Code-driven
ev2 LTTng acts as an observer:

Monitoring Tools
(e.g. LTTng) P Listens for specific events

P Does not disrupt the execution flow

Introduction and Motivation May 2016 3/14

Introduction and Motivation

S —

Code Execution
Flow From Runtime Model Monitoring. ..

evl v/ Timing / Resource Constraint Violation

AT v/ Code-driven
ev2 LTTng acts as an observer:

Monitoring Tools
(e.g. LTTng) P Listens for specific events

P Does not disrupt the execution flow

v

...to a more general vision

Introduction and Motivation May 2016 3/14

Introduction and Motivation

S —

Code Execution
Flow From Runtime Model Monitoring. ..

evl

) IAT
Monitoring Tools | EE.

(e.g. LTTng)

v/ Timing / Resource Constraint Violation
v/ Code-driven
v LTTng acts as an observer:

P Listens for specific events

P Does not disrupt the execution flow

v

Serious games

e.g. Minecraft
o)

...to a more general vision

.: I Pluggable components:

P Animation and Interaction

P Debugging

Model Animation

Introduction and Motivation May 2016 3/14

Introduction and Motivation

Monitoring Tools
(e.g. LTTng)

Custom Code

S —

Code Execution
Flow

evb

Introduction and Motivation

Serious games
(e.g. Minecraft)

3
@ _®)

Model Animation

From Runtime Model Monitoring. ..

v/ Timing / Resource Constraint Violation
v/ Code-driven
v LTTng acts as an observer:

P Listens for specific events

P Does not disrupt the execution flow

v

...to a more general vision

5" Pluggable components:
P Animation and Interaction
P Debugging

¥ Consumer / Producer of events

May 2016 3/14

Infrastructure Overview

\«____.—-——//\

Integrated Monitoring & Animation & Three activities. ...

Debugging Simulation Interaction

The Supporting Infrastructure Overview May 2016 4/ 14

Infrastructure Overview

_«______:/—\

... For two purposes. . .

Quality Assurance Communication A

[Integrated ‘ [Monitoring & [Animation & ! Three activities. ...

Debugging Simulation Interaction

The Supporting Infrastructure Overview May 2016 4/ 14

Infrastructure Overview

\«_______//\

Design

... to support model-driven design

P Allows for continous development
P Driven by the code generation
« refines » Code Generation « refines » » Highly Configurable

+ Context
configuration

Execution A
VN

« purpeser ¢ p”""’”% ... For two purposes. ..
Quality Assurance Communication A
[Integrated ‘ [Monitoring & [Animation & ! Three activities. ...
Debugging Simulation Interaction

The Supporting Infrastructure Overview May 2016 4/ 14

Open Source tool Support

esign

|

/od) PAPYRUS | _
\V) REAL TIME Code Gelneratlon + Context
ontex

Execution configuration

/

Quality Assurance Communication
| Integrated L Monitoring &' Animation &
debugging Simulation Interaction
D, o .8
%‘ TRACE
COMPASS
The Supporting Infrastructure Overview May 2016

5/ 14

Infrastructure’s Challenges

\4________//\

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

\«_________//\

Challenges to address

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

_«______:/—\

Challenges to address

IZ" Each pluggable component is an
observer that consumes / produces
specific events ;

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

\«______:/—\

Challenges to address

IZ" Each pluggable component is an
observer that consumes / produces
specific events ;

I¥" Each component has to interact
with the generated code ;

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

\«______:/—\

Challenges to address

IZ" Each pluggable component is an
observer that consumes / produces
specific events ;

I¥" Each component has to interact
with the generated code ;

IS The generated code has to interact
with the hardware platform.

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

\«_______//\

Challenges to address How we addressed them

IZ" Each pluggable component is an
observer that consumes / produces
specific events ;
Il 3
I¥" Each component has to interact
with the generated code ;

IS The generated code has to interact
with the hardware platform.

The Supporting Infrastructure Overview May 2016 6/ 14

Infrastructure’s Challenges

\«______:/—\

Challenges to address How we addressed them

IZ" Each pluggable component is an v/ Definition of a Context Con-
observer that consumes / produces figuration Model that lists all
specific events ; monitorable events ;

111 2

I¥" Each component has to interact
with the generated code ;

IS The generated code has to interact
with the hardware platform.

The Supporting Infrastructure Overview May 2016 6/ 14

Configuring the infrastructure

[.. [. |
CommunicationE AttributeE

‘CapsuIeE‘ ‘StateMachineE‘

% 1 Z} |
[\ |
‘MessageE‘ ‘QueueE‘ ‘CreatedE‘ ‘DestroyedE‘ ‘BoundE‘

‘ InitializedE‘ ‘ChangedE‘

A

| T

‘ StateE a TransitionE ‘

A

:

‘SentE‘ ‘DeliveredE‘ ‘HandledE‘ ‘DrOppedE ActiveE ‘TriggeredE

Observability of Models: Towards a
The Supporting Infrastructure Taxonomy of Events

May 2016

7/ 14

Infrastructure’s Challenges

\«__________/

Challenges to address How we addressed them

IZ" Each pluggable component is an v/ Definition of a Context Con-
observer that consumes / produces figuration Model that lists all
specific events ; monitorable events ;

(-

I¥" Each component has to interact
with the generated code ;

I5" The generated code has to interact
with the hardware platform.

Observability of Models: Towards a
The Supporting Infrastructure Taxonomy of Events May 2016 8/ 14

Infrastructure’s Challenges

\«_—._————/

Challenges to address How we addressed them
IZ" Each pluggable component is an v/ Definition of a Context Con-
observer that consumes / produces figuration Model that lists all
specific events ; monitorable events ;

(-
I¥" Each component has to interact v/ Extension of the PapyrusRT
with the generated code ; code generator ;

I5” The generated code has to interact
with the hardware platform.

Observability of Models: Towards a
The Supporting Infrastructure Taxonomy of Events May 2016 8/ 14

Extending the PapyrusRT Code Generator

\ /\

)

Papyrus Model

PapyrusRT

Codegen

« generates »

Bash

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9/ 14

Extending the PapyrusRT Code Generator

\ /\

)

Papyrus Model

PapyrusRT

Codegen

« generates »

Bash

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9/ 14

Extending the PapyrusRT Code Generator

\

)

Papyrus Model

Ca psuleGeneratoﬂ\
~

PapyrusRT
Codegen

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9/ 14

Extending the PapyrusRT Code Generator

\

|

Papyrus Model

Ca psuleGeneratoﬂ\
~

~

ProtocolGenerato} -~
PapyrusRT Context
_ Codegen Code Generator
StateMachineGenerato} -

« generates »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9/ 14

Extending the PapyrusRT Code Generator

Context Config.

|

Papyrus Model

Ca psuleGeneratoﬂ\
~

~

N

ProtocolGenerato} -~

PapyrusRT Context
o Codegen Code Generator
StateMachineGenerato} -
e ‘
« generates »
« generates »
The Supporting Infrastructure Extending the PapyrusRT Code Generation

Model

May 2016

9/ 14

Extending the PapyrusRT Code Generator

f - D « defines »
:) Context Config.

Model «|defines »

Papyrus Model

Ca psuleGeneratoﬂ\
~

~ o ExtStateMachineGenerator
~ _ -~ | for LTTng
ProtocolGenerato} -~
PapyrusRT Context
_ Codegen Code Generator
StateMachineGenerato} - <7~ _
A ~ ~ < _| ExtStateMachineGenerator
Phd - ‘ \Eor animation
i g « generates »

« generates »

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 9/ 14

Infrastructure’s Challenges

\«_______//\

Challenges to address

IZ" Each pluggable component is an
observer that consumes / produces
specific events ;

I¥" Each component has to interact
with the generated code ;

I5” The generated code has to interact
with the hardware platform.

The Supporting Infrastructure

(-

How we addressed them

v/ Definition of a Context Con-
figuration Model that lists all
monitorable events ;

v/ Extension of the PapyrusRT
code generator ;

Extending the PapyrusRT Code Generation May 2016 10 / 14

Infrastructure’s Challenges

\«_______//\

Challenges to address How we addressed them
IZ" Each pluggable component is an v/ Definition of a Context Con-
observer that consumes / produces figuration Model that lists all
specific events ; monitorable events ;

(-
I¥" Each component has to interact v/ Extension of the PapyrusRT
with the generated code ; code generator ;
I5" The generated code has to interact v/ Definition of a Rover Library
with the hardware platform. to interact with the hardware.

The Supporting Infrastructure Extending the PapyrusRT Code Generation May 2016 10 / 14

Definition of the Rover Library

\«____.—-——//\

Control Software

Rover Library

GPIO Class

Hardware

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 11/ 14

Definition of the Rover Library

\«______:/—\

» Contains the Business Logic

» Does not know about the hardware configuration

» Interacts with the Rover Library

Control Software

Rover Library

GPIO Class

Hardware

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 11/ 14

Definition of the Rover Library

Control Software

Rover Library

GPIO Class

The Supporting Infrastructure

» Contains the Business Logic
» Does not know about the hardware configuration

» Interacts with the Rover Library

» Makes the glue with the Hardware

» Defines the protocols the Business Logic will have
to interact with

» Specific to a design configuration

Defining the Libraries: The Rover Model May 2016 11/ 14

Definition of the Rover Library

Funtime-rover - Java - Rover/Rove

Flle Edit 77 Diagram Navigate Search Papyrus Project UMLRTMenu Run Window Help

2 Console | & Model Explorer m‘ = O 77 *Roverdi 32

i 0E

=

Capsule»
«Protocoly Engine Top
«Protocol» Detection
i«Protocol» Temperature
‘«Capsule, CapsuleProperties» ThermometerSensor
‘«Capsule, CapsuleProperties» DetectionSensor
+ [©«Capsule, CapsuleProperties» EngineController

«CapsulePart> E
t; # rover: Rover [1]

" FouCapsulen Rover suieparts =
s ArtifaciProperties» GPIOCIss - # controlSoftware: ContrafSoftware (1

«Capsulen Top
= «CapsulePart» controlSoftware : ControlSoftware
= «CapsuleParts rover : Rover
» # «RTConnector» Connectorl P,
» «RTConnector» Connector2 [H0"+ timer. Timing (11

RTPorts

» +* «RTConnector» Connector3 «RTPort»
«RTConnector»
BiTop + detection: Detection (1] o [}——— [T}y - 0
of] Conmectors + detection: ~Detection [1]

~ =+ «Capsule» ControlSoftware
5 «RTPort» engine : Engine
5 «RTPort» detection : Detection
5 «RTPort» temperature : Temperature
5 «RTPort» timer : Timing
5 «RTPort» log : Log Connector2
= distance : Real
» S threshold : Real
=
ExControlSoftware
» 1=+ «Capsule» Capsulel
> = ModelLibrary» UMLRT-RTS 5
; @ Welcome | B Top 22

= 9items selected

<RTConnector» o «RTPort»
+ engine: ~Engine [1]

Connectorl

«RTPort» <RTPort>
+ temperature: Temperature [1] + temperature: ~Temperature [1]
<RTConnector»

The Supporting Infrastructure Defining the Libraries: The Rover Model May 2016 12 /14

Animating the Model

Animation View %2 =c

Shetir 5 e tre Web based animation & State Machine
cipitiamn 3 Live Monitoring

7 Rover.di 31 ==
i agpstates TumingLett

Y
tumingleft

e SopTumingLet
e
i P
S B e moveForvara e
WovingBackvard movesadkuara ae e MovingFarward
Jentry Opagucgavir S fentry OpaqueBehavior nul Jentry Opagucgenavior
otgBsciar | stop O Rarg /o"Y PR stopMovingForwara ovngForvars

stopl «

stopl.

tumRight.

tumight stopTumingRight

timeout.
CRrstates
TumingRight

Animating and Interacting with the model May 2016 13 /14

Animating the Model

Animation View %2

Web based animation & State Machine
Live Monitoring

Teuperature:™- ¥

v/ Animation of the Rover Model

2 Rovera -=
pres— Tuminglat q
y
hnoten
e SopTumingLet
e
i P
st B e moveForvara or
o moveBackvara e oo MovingForuard
Jentry Opagucgenavior S fentry OpaqueBehavior nul Jentry Opagucgenavior
modtgsciwar stofiRSARgHstRarg /" 0P stopMovingForward ‘MovgFoara
FrrR

stopl.

tumRight.

tumight stopTumingRight

Animating and Interacting with the model May 2016 13 /14

Animating the Model

Animation View %2

Speedy - Teuperatur
obstac =

7 Rover.di 31

i agpstates TumingLett
Y
tumingleft

turnlen stopTumingleft
tumLef
el -
~isiater I Risialer moveForward
MovingBackvard moveBackuard e

“moverorward
Jontry OpagueBehavior = —ovemacruara— fentry OpagueBehavior null
rascoma " | stofRSFRGE g /" P21
stopl «

stopMovingForward

stopl.

tumRight.

tumight stopTumingRight

tes
MovingForward

Jentry OpagueBehavior
movingForvard

Animating and Interacting with the model

Web based animation & State Machine
Live Monitoring

v/ Animation of the Rover Model
v/ Code-driven (different from Moka)

May 2016 13 /14

Animating the Model

Animation View %2

Si% Speedy -10 mph : Temperature:™- ¥
Obstacle detected: = n &

7 Rover.di 31

ogpstates TumingLett

Y
tumingleft

turnlen stopTumingleft
tumLef mecu
- . | timeaut.
moveForward

e Risialer
MovingBackvard moveBackus al

tumight stopTumingRight

stopl.
tumRight.
timeout.

- erses
ard e moverorwar | MevingForward

ey Opmienas [P s ey opemsenin
o R Y T

Animating and Interacting with the model

Web based animation & State Machine
Live Monitoring

v/ Animation of the Rover Model
v/ Code-driven (different from Moka)

v/ Works as an observer:
P Bi-directional socket

communication with the C++
code

P Listen all events (state changes,
transitions fired)

P Would at last interact with the
code execution flow (not
supported yet)

May 2016 13 /14

What's Next 7

——d/

Vision

¥ Improve the different parts of the infrastructure,
especially the code generator to allow for several
configurations to be used at the same time ;

I&" Define different libraries for different models ;

K&” Some bugs have to be corrected in Papyrus /
PapyrusRT (e.g. Internal transition with effects,
graphical glitches since the new Eclipse version,
etc.).

Animating and Interacting with the model

Animation & Interaction

I&” Allow the user to interact with the model using
the animation view ;

¥¥” |mplement other animation engines (2D/3D,
Unity, etc.) ;

I¥” Propose a creation tool to automatically create
animation views to animate and interact with the
model ;

¥ Look at Moka to see if it can be used to simulate
the state machine execution ;

May 2016 14 / 14

Queerrs Coifiputing
Queen's University
Kingston, Ontario, Canada

UNIVERSITY

Thank You !

Questions 7

	Introduction and Motivation
	The Supporting Infrastructure
	Overview
	Observability of Models: Towards a Taxonomy of Events
	Extending the PapyrusRT Code Generation
	Defining the Libraries: The Rover Model

	Animating and Interacting with the model
	Integrated Debugging

