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Web based animation & State Machine
Live Monitoring

v/ Animation of the Rover Model
v/ Code-driven (different from Moka)

v/ Works as an observer:
P Bi-directional socket

communication with the C++
code

P Listen all events (state changes,
transitions fired)

P Would at last interact with the
code execution flow (not
supported yet)
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Vision

¥ Improve the different parts of the infrastructure,
especially the code generator to allow for several
configurations to be used at the same time ;

I&" Define different libraries for different models ;

K&” Some bugs have to be corrected in Papyrus /
PapyrusRT (e.g. Internal transition with effects,
graphical glitches since the new Eclipse version,
etc.).

Animating and Interacting with the model

Animation & Interaction

I&” Allow the user to interact with the model using
the animation view ;

¥¥” |mplement other animation engines (2D/3D,
Unity, etc.) ;

I¥” Propose a creation tool to automatically create
animation views to animate and interact with the
model ;

¥ Look at Moka to see if it can be used to simulate
the state machine execution ;
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