Large Scale Debugging
Project Meeting Report - May 2017

Didier Nadeau
Under the supervision of Michel Dagenais

Distributed Open Reliable Systems Analysis Lab
Ecole Polytechnique de Montréal

POLYTECHNIQUE MONTREAL

Table of contents

@ IDE

Standard debug view
Stack aggregation view
Thread filter

® GPU
HSA Foundation
Debugging GPUs

© In-Process Agent

Fast tracepoints
Conditional breakpoints

Large scale Debugging { Didier Nadeau 2/19 { www.polymtl.ca

POLYTECHNIQUE MONTREAL GPU

Debug View

45 Debug 2 i+ v =8

. v [] dragonizer [/C++ Application]

T h e view sh OWS t h e prog ram v & dragonizer [11002] [cores: 1,2,3,4,5,6,7]

v Thread #1 [dragonizer] 11002 [core: 3] (Suspended : Container)

M thread_join() at pthread_join.c:92 0x 7ffff738765b
being debugged, the processes o e o et 25
. . . :md_draw() at dragonizer.c:154 0x402d39

running it and their th reads A = main() at dragonizer.c:540 0x401e85
» o Thread #11 [dragonizer] 11062 [core: 5

(suspended : Container)
» o Thread #12 [dragonizer] 11063 [core: 6] (Suspended : Container)
» o Thread #13 [dragonizer] 11064 [core: 4] (Suspended : Container)

]
]
A]
T h rea d S Sh own | na I |St » o Thread w[dragonizeq 11065 [core: 3] (Suspended : Breakpoint)
]
]

» o Thread #15 [dragonizer] 11066 [core: 4] (Suspended : Container)
» o Thread #16 [dragonizer] 11067 [core: 1] (Suspended : Container)
> o Thread #17 [dragonizer] 11068 [core: 7] (Suspended : Container)

ragon_draw_worker() at dragon_pthread.c:52 0x4021b7

Must expand a thread to know =
. art_thread() at pthread_create.c:312 0x7ffff7386184
its curre nt I (o] Catl on = clone() at clone.s:111 0x7ffff6cge37d

v f? Thread #19 [dragonizer] 11070 [core: 2] (Suspended : Container)
thread_barrier_wait() at pthread_barrier_wait.5:71 0x7ffff738b23c
ragon_draw_worker() at dragon_pthread.c:50 0x4021b7
art_thread() at pthread_create.c:312 Ox7FffF7386184

lone() at clone.s:111 0x 7ffff6c8e37d

o gdb (7.7.1)

Similar to many different IDEs

Large scale Debugg 19 { www.polymtl.ca

POLYTECHNIQUE MONTREAL GPU

Stack Aggregation View

Automatic grouping

The stack aggregation view automatically groups threads using
their call stacks.

Logically groups thread together.
Can be used together with the standard debug view.
Lists threads and stack frames together.

Can significantly reduce the number of elements in the view.

Large scale Debugging { Didier Nadeau 4/19 { www.polymtl.ca

POLYTECHNIQUE MONTR EAL GPU

Stack Aggregation View

Large scale Debugging { Didier Nadeau 5/19 { www.polymtl.ca

GPU In-Process Agent

POLYTECHNIQUE MONTR EAL

Dealing with large amount of threads

Many-core debugging

Large numbers of threads overload debug views and can generate
an important number of events.

User needs to scroll to view every thread.
The developer can be overwhelmed by the amount of events

Thread-speci c or conditional breakpoints already lter out
useless events.

Large scale Debugging { Didier Nadeau 6/19 { www.polymtl.ca

POLYTECHNIQUE MONTR EAL GPU In-Process Agent

Thread lter

The stack aggregation view
groups threads by their
behavior.

It can be used to select
threads that do not interest
the developer.

For instance : Mask threads
working in code that does not
need to be debugged.

Selecting threads

Large scale Debugging { Didier Nadeau 7/19 { www.polymtl.ca

POLYTECHNIQUE MONTR EAL GPU In-Process Agent

Thread lter

The threads previously selected
areremoved from the view.

The threads hidden from
perspectivagnore
breakpoints, reducing event
noti cations.

A ects every view of the IDE.

The Iter removes unwanted threads from
perspective.

Large scale Debugging { Didier Nadeau 8/19 { www.polymtl.ca

In-Process Agent

POLYTECHNIQUE MONTR EAL

AMD Software Stack

Radeon Open Compute

An initiative launched in 2015 by AMD to provide an open-source
software stack to interact with graphic cards for professional use
and personnal use.

Provides a standardized interface for programmer
Multiple instruction sets
Radeon Open Compute is an implementation by AMD

Large scale Debugging { Didier Nadeau 9/19 { www.polymtl.ca

POLYTECHNIQUE MONTR EAL

In-Process Agent

HSA Programming model 1

The programming model uses
a grid lled with data
elements.

A function, or kernel, is
applied to each element.

Multiple elements processed
together in a wave.

The Radeon R9 Nano used car
support more tham thousand
waves simultaneously.

'From the HSA Programmer's Reference Manual 1.0

Large scale Debugging { Didier Nadeau

10/19 { www.polymtl.ca

	IDE
	Standard debug view
	Stack aggregation view
	Thread filter

	GPU
	HSA Foundation
	Debugging GPUs

	In-Process Agent
	Fast tracepoints
	Conditional breakpoints

