
GPU Tracing and Profiling

Progress Report Meeting
December 12, 2016

Paul Margheritta Michel Dagenais

DORSAL lab
École Polytechnique de Montréal

GPU Tracing and Profiling Introduction Current results Future work

Hardware context

• AMD Radeon R9 Nano
graphics card

• Graphics Core Next
architecture

• 4096 stream processors
= 4096 cores

• 4 GB video memory

• Released in October 2015

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 2/14

GPU Tracing and Profiling Introduction Current results Future work

Research goals

• Understanding current tracing and
profiling mechanisms on GPUs

• Adapting mechanisms to our tools:
LTTng, Trace Compass...

• Developing new tools for performance
analysis on GPUs and heterogeneous
systems

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 3/14

GPU Tracing and Profiling Introduction Current results Future work

Software context

• ROCm (Radeon Open Compute):
open-source platform for GPU
development

• HSA (Heterogeneous System
Architecture): runtime and API used to
launch compute kernels

• CodeXL: open-source debugging and
performance analysis tool for HSA and
OpenCL

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 4/14

GPU Tracing and Profiling Introduction Current results Future work

Intercepting API calls

hsa_api_table

hsa_init

hsa_system_get_info

hsa_queue_create

hsa_init_fn

hsa_system_get_info_fn

hsa_queue_create_fn

my_hsa_queue_create

• Examples of API functions: hsa init,
hsa system get info, hsa queue create...

• Function pointers are stored in a table

• Intercepting an API call: changing the function pointer in
the table

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 5/14

GPU Tracing and Profiling Introduction Current results Future work

Automating interception

• Typical interception case: instrumenting entries and exits
for API functions

• Easy generation of header and sources for the interception

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 6/14

GPU Tracing and Profiling Introduction Current results Future work

An API call stack with LTTng + Trace Compass

• The XML analysis feature of Trace Compass is used to build
a call stack view

• Function names are pushed and popped on a stack in the
state system

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 7/14

GPU Tracing and Profiling Introduction Current results Future work

Launching a compute kernel on the GPU

1 Creating a queue

2 Obtaining the current write index

3 Writing an AQL kernel dispatch packet

4 Ringing the doorbell to launch the kernel

1 Creating a queue

2 Creating a kernel object

3 Enqueuing the kernel in the queue

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 8/14

GPU Tracing and Profiling Introduction Current results Future work

Timing kernels

kernel_times

start = 0.582
end = 0.587

kernel_start

kernel_end

17:05:19.582

17:05:19.587

runtime_init17:05:19.000

17:05:19.985

• Goal: including kernel
start/end times as events
in the trace

• A profiled queue can be
created to gather timing
information about kernels

• The kernel start/end times
are synchronized with
the initialization using
the monotonic clock

• The new events are
included in the initial trace
using the Python
Babeltrace bindings

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 9/14

GPU Tracing and Profiling Introduction Current results Future work

Visualizing the status of kernels

• Two states for queues: WAITING and RUNNING

• Three states for kernels: WAITING, RUNNING and DONE

• Reflecting the HSA structure in the state system:
agent → queue → kernel

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 10/14

GPU Tracing and Profiling Introduction Current results Future work

Sampling performance counters

• Low-level, hardware-related data can be
obtained with GPUPerfAPI (GPA)

• Few performance counters available in
HSA: Wavefronts, CacheHit...

• Opening a GPA context: easy with API
interception on the queue creation and
destruction

• Opening a GPA sample: intercepting the
kernel dispatch is harder in HSA

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 11/14

GPU Tracing and Profiling Introduction Current results Future work

Combining data from multiple runs

kernels #1 kernels #2 kernels #3 GPA #1 GPA #2 GPA #3

kernels GPA

average
run

• Goal: having kernel timing and performance counters data
at the same time

• Problem: it requires two types of queues

• Solution: running the program multiple times with the two
types of queues and merging the traces

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 12/14

GPU Tracing and Profiling Introduction Current results Future work

Future work

• Working on bigger applications

• Gathering lower-level data about GPU
activity

• Tracing the ROCm Linux kernel driver

• Analyzing other types of GPU traces
(JSON...)

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 13/14

GPU Tracing and Profiling Introduction Current results Future work

Thank you!

Any questions?

paul.margheritta@polymtl.ca

Progress Report Meeting – December 2016 – Paul Margheritta, Michel Dagenais 14/14

	Introduction
	Current results
	Future work

