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GPU Tracing and Profiling Introduction Current results Future work

Hardware context

• AMD Radeon R9 Nano
graphics card

• Graphics Core Next
architecture

• 4096 stream processors
= 4096 cores

• 4 GB video memory

• Released in October 2015
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Research goals

• Understanding current tracing and
profiling mechanisms on GPUs

• Adapting mechanisms to our tools:
LTTng, Trace Compass...

• Developing new tools for performance
analysis on GPUs and heterogeneous
systems
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Software context

• ROCm (Radeon Open Compute):
open-source platform for GPU
development

• HSA (Heterogeneous System
Architecture): runtime and API used to
launch compute kernels

• CodeXL: open-source debugging and
performance analysis tool for HSA and
OpenCL
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Intercepting API calls

hsa_api_table

hsa_init

hsa_system_get_info

hsa_queue_create

hsa_init_fn

hsa_system_get_info_fn

hsa_queue_create_fn

my_hsa_queue_create

• Examples of API functions: hsa init,
hsa system get info, hsa queue create...

• Function pointers are stored in a table

• Intercepting an API call: changing the function pointer in
the table
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Automating interception

• Typical interception case: instrumenting entries and exits
for API functions

• Easy generation of header and sources for the interception
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An API call stack with LTTng + Trace Compass

• The XML analysis feature of Trace Compass is used to build
a call stack view

• Function names are pushed and popped on a stack in the
state system
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Launching a compute kernel on the GPU

1 Creating a queue

2 Obtaining the current write index

3 Writing an AQL kernel dispatch packet

4 Ringing the doorbell to launch the kernel

1 Creating a queue

2 Creating a kernel object

3 Enqueuing the kernel in the queue
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Timing kernels

kernel_times

start = 0.582
end   = 0.587

kernel_start

kernel_end

17:05:19.582

17:05:19.587

runtime_init17:05:19.000

17:05:19.985

• Goal: including kernel
start/end times as events
in the trace

• A profiled queue can be
created to gather timing
information about kernels

• The kernel start/end times
are synchronized with
the initialization using
the monotonic clock

• The new events are
included in the initial trace
using the Python
Babeltrace bindings
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Visualizing the status of kernels

• Two states for queues: WAITING and RUNNING

• Three states for kernels: WAITING, RUNNING and DONE

• Reflecting the HSA structure in the state system:
agent → queue → kernel
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Sampling performance counters

• Low-level, hardware-related data can be
obtained with GPUPerfAPI (GPA)

• Few performance counters available in
HSA: Wavefronts, CacheHit...

• Opening a GPA context: easy with API
interception on the queue creation and
destruction

• Opening a GPA sample: intercepting the
kernel dispatch is harder in HSA
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Combining data from multiple runs

kernels #1 kernels #2 kernels #3 GPA #1 GPA #2 GPA #3

kernels GPA

average
run

• Goal: having kernel timing and performance counters data
at the same time

• Problem: it requires two types of queues

• Solution: running the program multiple times with the two
types of queues and merging the traces
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Future work

• Working on bigger applications

• Gathering lower-level data about GPU
activity

• Tracing the ROCm Linux kernel driver

• Analyzing other types of GPU traces
(JSON...)
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Thank you!

Any questions?

paul.margheritta@polymtl.ca
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