
SOFTWARE  DEBUGGING  AND  

M ONITORING  FOR  M ULTI -CORE  

SYSTEMS  

Naser  Ezzati  

DORSAL Lab  

Polytechnique  Montreal, Canada  

      

 Sharif -DNSL  

       Jan 2016  



AGENDA  

ºProblem Faced 

ºStatic and Dynamic Analysis  

ºDebugging vs Tracing  

º Trace Analysis Tools  

ºResearch Tracks  

ºConclusion  

 



 



PROBLEM  FACED  

º Today's systems are composed of computers or 
virtual machines that interact between 
themselves.  

ºUnderstand the running behavior of those 
systems or find suspicious activities is more 
difficult.  

ºHow to verify if the system is working as 
intended?  

ºWhy is the system slow? Where is the bottleneck?  

ºWhy do we get this incorrect answer once in a 
billion times?  

ºAre there intrusion attempts? Did they succeed?  

ºAre we leaking information?  



STATIC  VS. DYNAMIC  ANALYSIS  

ºStatic Analysis  

· Source codes and other artifacts  

ºNot available  

ºOutdated  

ºDifficult to analysis  

ºDynamic Analysis  

· Runtime behaviour analysis  

· Tracing  

ºPerformance bottlenecks  



TRACING  

º What is Tracing?  

· Process of collecting information about the program's 
execution  
º Trace-points  

º Inserted before compile -time, enabled/disabled at run -time  

º People can use them to extract useful information without having to 
know the code 

· The later analysis of this information may help us understand 
why a part of the software is not behaving as it is expected to.  

· ôHeisenbugsô detection, hard to detect errors 
º Race conditions, Deadlocks, Non -deterministic behavior  

º Multiple layers  

º Middleware, VM, OS, hypervisor  

º Performance Problems  

º problems are not reproducible in the developerõs environment!  

º Debuggers: 

· Debuggers are indispensable, but they only show a snapshot.  

 

 



TRACING  USECASES 

º Finding cause of  

· Performance issues  

· Concurrency issues  

· Failures, crashes  

ºSystem-wide troubleshooting  

·Multiple layers, multi -core, multi -processor, multiple 

nodes, etc. 

º Live monitoring of system in production  

· Resource usage (e.g. CPU load) 

· Raising alarms, warnings  

·Overload protection  



TRACING  TOOLS 

ºClassification:  

· Userspace Tracing  

ºChrome://tracing  

· Kernel Tracing  

· Hardware Tracing  

ºETW: Event Tracing for Windows  

º Linux Tracing Tools:  

· SystemTap  

· Perf  

· DTrace 

· LTTng  

 



USERSPACE TRACING  

ºUST Trace Library  

ºExample:  

· LTTng  UST 

· Chrome:tracing  

 



 



 



 



 



L INUX  KERNEL  TRACING  



TRACEPOINT  

ºStatically placed at different logical places in the 

kernel  

ºMore than 250 tracepoints  

º TRACE_EVENT() macro  



TRAVE_EVENT M ACRO 





PROBES 

ºKprobes: dynamic kernel tracing  

· Function calls, returns, line numbers  

ºUprobes: dynamic user -level tracing  



      LTTNG  

            +  

TRACE  COMPASS 



LTT NG:  

L INUX  TRACE  TOOLKIT  NEXT  GENERATION  

º Scalable tracer  

º Fast tracer  

º Minimal impact and overhead on the target  

º Output data in unified format (CTF)  

º Flight -recorder  

º Support kernel and user -space tracing  

º Easy installation:  
· Support kernel from 2.6.38 + 

º Linux Distribution:  
· Ubuntu  

· Debian  

· Fedora 

· Arch  

· Suse 

· Red Hat  

· Other OS:  
º Android, FreeBSD, Cygwin  

 

 





LTT NG IS FAST! (K ERNEL ) 



LTT NG IS FAST! (UST)  



LTT NG IS FAST!  



EXAMPLE  KERNEL  TRACE  SESSION : 

SIMPLE  AND  UNIFIED  COMMAND  LINE  
$lttng  create session 

$lttng  enable-event -k-a (or  -k sched_switch) 

$lttng  enable-event -u -a 

$lttng  start  

$lttng  stop 

$lttng  view  

$lttng  destroy  



LTT NG COMMON  TRACE  FORMAT  

VIEWERS  



OUTPUT  TRACE : BABELTRACE  



lttng  enable-event --syscall  -a 

OUTPUT  TRACE : SYSTEM  CALL  TRACE  


