
State Machine Slicing for Optimizing Test Case 
Generation for UML-RT Models

Reza Ahmadi
Supervisor: Prof. Dr. Juergen Dingel



Outline

2

● Unit Testing UML-RT Models

● Using Slicing for Testing UML-RT Models

● A Quick Tool Demo

● Summary and Future Work



Unit Testing UML-RT Models 

3

A UML-RT capsule (C)

Fig 1. A UML-RT Capsule Communicates Other Capsules Connected to it



Extracting a Capsule and Driving it by Test Inputs 

4

We are interested in the 

order and occurrence of 

events, time bounds, etc.

Test Inputs

A UML-RT capsule

Fig 2. Extracting a Capsule and Driving it by Test Inputs



Testing Using Symbolic Execution

Test Inputs

Symbolic Execution Tree (SET)

Symbolic Execution 
Testing

Fig 3. Test case generation Using Symbolic Execution

5



Other Test Generation Techniques

6

● Test generation using a test budget (Random/Sequential)

○ Easy to implement and light to execution

○ Many bugs may remain hidden after test budget limit is reached

● Using symbolic execution approaches

○ Can catch bugs hidden deep in the state machine

○ Downside is it needs heavy computations, can simply end up Path Explosion



Slicing to the Rescue

7

Capsule Reduced Capsule Reduced SET

Fig 4. Using Slicing for Optimizing Test Case Generation



Tool Demo!

8

● Trying our slicing tool to slice a simple state machine

● Observing how slicing can contribute in reducing symbolic execution time of a

state machine

○ We do not generate tests from symbolic execution tree



Summary and Future Work

9

● We slice state machines to reduce the size of state machines

○ For optimizing test case generation

● Current tool works perfectly for a subset of UML-RT, features to be added 

○ Support for slicing composite capsules

○ Support for slicing state machines with timers



Thank you


